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The QR factorization

Given a matrix A ∈ Rm×n, m ≥ n, its QR factorization is

A = QR = (Q1 Q2)

(
R1

0

)
= Q1R1

where Q ∈ Rm×m is orthogonal and R ∈ Rm×n is upper triangular.

If A has full rank, the factorization Q1R1 is essentialy unique (modulo signs
of diagonal elements of R).

� ATA = RT
1 R1 is a Cholesky factorization and A = AR−11 R1 is a QR

factorization.

� A = Q1D · DR1, D = diag(±1) is a QR factorization.
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Householder transformation

The Householder matrix

P = I − 2

vT v
vvT

has the following properties:

� is symmetric and orthogonal,
P2 = I ,

� is independent of the scaling of v ,

� it reflects x about the hyperplane
span(v)⊥

Px = x − 2vT x

vT v
v = x − αv

Presentation of Householder transformations and stability analysis from

[N.J.Higham, 2002].
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Householder for the QR factorization

We look for a Householder matrix that allows to annihilate the elements of a
vector x , except first one.

Px = y , ‖x‖2 = ‖y‖2, y = σe1, σ = ±‖x‖2

With the choice of sign made to avoid cancellation when computing
v1 = x1 − σ, we have

v = x − y = x − σe1,

σ = −sign(x1)‖x‖2, v = x − σe1,

P = I − βvvT , β =
2

vT v
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Householder based QR factorization

A =

x x x
x x x
x x x

 = P1

x x x
0 x x
0 x x

 = P1

(
1

P̃2

)x x x
0 x x
0 0 x

 = R

So we have

QTA = PnPn−1 . . .P1A = R,

Q = (I − β1v1vT
1 ) . . . (I − βn−1vn−1vT

n−1)(I − βnvnvT
n )

#flops = 2n2(m − n/3)
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Error analysis of Householder transformations

Lemma (Lemma 19.1 in [N.J.Higham, 2002])
Consider the computation of P = I − βvvT , where Px = σe1, v ∈ Rm, as
1: v = x
2: s = sign(x1)‖x‖2, %σ = −s
3: v1 = v1 + s
4: β = 1/(sv1)

Then we have

v̂(2 : n) = v(2 : n)

β̂ = β(1 + θ̃m), v̂1 = v1(1 + θ̃m), where |θ̃m| ≤ γ̃m

Proof based on the fact that fl(xT x) = (1 + θm)xT x . The result can be
re-written as

v̂ = v + ∆v , |∆v | ≤ γ̃m|v |
In the following results, the Householder matrix is I − vvT , hence v =

√
βv ,

β = 1, and so ‖v‖2 =
√

2.
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Error analysis of Householder transformations

Lemma (Lemma 19.2 in [N.J.Higham, 2002])
Consider the computation y = P̂b = (I − v̂ v̂T )b, where b, v̂ ∈ Rm. Then

ŷ = (P + ∆P)b, ‖∆P‖F ≤ γ̃m. (1)

Proof.

ŵ = fl(v̂(v̂Tb)) = (v̂ + ∆v̂)(v̂T (b + ∆b)), |∆v̂ | ≤ u|v̂ | and |∆b| ≤ γm|b|
= (v + ∆v + ∆v̂)(v + ∆v)T (b + ∆b)

Hence
ŵ = v(vTb) + ∆w , where |∆w | ≤ γ̃m|v ||vT ||b|
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Error analysis of Householder transformations

Continued proof of the previos lemma. We obtain

ŷ = fl(b − ŵ) = b − v(vTb)−∆w + ∆y1, |∆y1| ≤ u|b − ŵ |

Since
| −∆w + ∆y1| ≤ u|b|+ γ̃m|v ||vT ||b|

we obtain
ŷ = Pb + ∆y , ‖∆y‖2 ≤ γ̃m‖b‖2

Finally, with ∆P = ∆ybT/bTb, we have

ŷ = (P + ∆P)b, ‖∆P‖F = ‖∆y‖2/‖b‖2 ≤ γ̃m
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Error analysis of a sequence of transformations

Lemma ([N.J.Higham, 2002])
Let Q = PrPr−1 . . .P1 and let Ar+1 = QTA, A ∈ Rm×n. We have

Âr+1 = QT (A + ∆A), ‖∆aj‖2 ≤ r γ̃m‖aj‖2, j = 1 : n

Sketch of the proof: Let aj be the j-th column of A.

â
(r+1)
j = (Pr + ∆Pr ) . . . (P1 + ∆P1)aj , ‖∆Pk‖F ≤ γ̃m, k = 1 : r

We obtain

â
(r+1)
j = QT (aj + ∆aj),

‖∆aj‖2 ≤ ((1 + γ̃m)r − 1)‖aj‖2 ≤
r γ̃m

1− r γ̃m
‖aj‖2 = r γ̃

′

m‖aj‖2
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Error analysis of the QR factorization

The following result follows

Theorem ([N.J.Higham, 2002])
Let R̂ ∈ Rm×n be the computed factor of A ∈ Rm×n obtained by using
Householder transformations. Then there is an orthogonal Q ∈ Rm×m such
that

A + ∆A = QR̂, where ‖∆aj‖2 ≤ γ̃mn‖aj‖2, j = 1 : n
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Householder-QR factorization

Require: A ∈ Rm×n

1: Let R ∈ Rn×n be initialized with zero matrix
2: for k = 1 to n do
3: . Compute Householder matrix Pk = I − βkvkvT

k s.t.
PkA(k : m, k) = ±‖A(k : m, k)‖2e1. Store vk in Y () and βk in
T (k)

4: R(k, k) = −sgn(A(k , k)) · ‖A(k : m, k)‖2
5: T (k) = R(k,k)−A(k,k)

R(k,k)

6: Y (k + 1 : m, k) = 1
R(k,k)−A(k,k) · A(k + 1 : m, k)

7: . Update trailing matrix
8: A(k : m, k + 1 : n) = (I − Y (k + 1 : m, k)T (k)Y (k + 1 :

m, k)T ) · A(k : m, k + 1 : n)
9: R(k, k + 1 : n) = A(k , k + 1 : n)

10: end for
Assert: A = QR, where Q = P1 . . .Pn = (I − β1v1vT

1 ) . . . (I − βnvnvT
n ), the

Householder vectors vk are stored in Y and T is an array of size n.
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Computational complexity

� Flops per iterations
� Dot product w = vT

k A(k : m, k + 1 : n) : 2(m − k)(n − k)
� Outer product vkw : (m − k)(n − k)
� Subtraction A(k : m, k + 1 : n)− . . . : (m − k)(n − k)

� Flops of Householder-QR

n∑
k=1

4(m − k)(n − k) = 4
n∑

k=1

(mn − k(m + n) + k2)

≈ 4mn2 − 4(m + n)n2/2 + 4n3/3 = 2mn2 − 2n3/3
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Algebra of block QR

Storage efficient representation for Q [Schreiber and Loan, 1989]

Q = Q1Q2 . . .Qk = (I − β1v1vT
1 ) . . . (I − βkvkvT

k ) = I − YTY T

Example for k = 2

Y = (v1|v2), T =

(
β1 −β1vT

1 v2β2
0 β2

)

Example for combining two compact representations

Q = (I − Y1T1Y T
1 )(I − Y2T2Y T

2 )

T =

(
T1 −T1Y T

1 Y2T2

0 T2

)
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Block algorithm for computing the QR factorization

Partitioning of matrix A of size m × n

A =

[
A11 A12

A21 A22

]
where A11 is of size b × b, A21 is of size (m − b)× b, A12 is of size
b × (n − b) and A22 is of size (m − b)× (n − b).

Block QR algebra
The first step of the block QR factorization algorithm computes:

QT
1 A =

(
R11 R12

A1

)
The algorithm continues recursively on the trailing matrix A1.
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Algebra of block QR factorization

A =

(
A11 A12

A21 A22

)
= Q1

(
R11 R12

A1

)

Block QR algebra

1. Compute the factorization (
A11

A12

)
= Q1R11

2. Compute the compact representation Q1 = I − YTY T

3. Apply QT
1 on the trailing matrix

(I − YTTY T )

(
A12

A22

)
=

(
A12

A22

)
− Y

(
TT

(
Y T

(
A12

A22

)))
4. The algorithm continues recursively on the trailing matrix A1.
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Parallel implementation of the QR factorization

QR factorization on a P = Pr × Pc grid of processors
For ib = 1 to n-1 step b
1. Compute panel factorization on Pr processors(

A11

A12

)
= Q1R11 = (I − YTY T )R11

2. The Pr processors broadcast along the rows their parts of Y and T
3. Apply QT

1 on the trailing matrix:
� All processors compute their local part of

Wl = Y T
l (A12l ;A22l)

� The processors owning block row ib compute the sum over Wl , that is

W = Y T (A12;A22)

and then compute W ′ = TTW
� The processors owning block row ib broadcast along the columns their part

of W ′

4. All processors compute

(A1
12; A1

22) = (A12; A22)− (A12; A22) ∗W ′

18 of 22



Cost of parallel QR factorization

γ ·
(

6mnb − 3n2b

2pr
+

n2b

2pc
+

2mn2 − 2n3/3

p

)
+ β ·

(
nb log pr +

2mn − n2

pr
+

n2

pc

)
+ α ·

(
2n log pr +

2n

b
log pc

)
.
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Solving least squares problems

Given matrix A ∈ Rm×n, rank(A) = n, vector b ∈ Rm×1,
the unique solution to minx ‖Ax − b‖2 is

x = A+b, A+ = (ATA)−1AT

Using the QR factorization of A

A = QR =
(
Q1 Q2

)(R1

0

)
(2)

We obtain

||r ||22 = ||b − Ax ||22 = ||b −
(
Q1 Q2

)(R1

0

)
x ||22

= ||
(
QT

1

QT
2

)
b −

(
R1

0

)
x ||22 = ||

(
QT

1 b − R1x
QT

2 b

)
||22

= ||QT
1 b − R1x ||22 + ||QT

2 b||22

Solve R1x = QT
1 b to minimize ||r ||2.
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� Stability analysis results presented from [N.J.Higham, 2002]

� Some of the examples taken from [Golub and Van Loan, 1996]
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