Dense QR factorization and its error analysis

Laura Grigori
INRIA and LJLL, Sorbonne Université

February 2018

Direct methods of factorization
QR factorization
Error analysis of QR factorization - main results Block QR factorization

Direct methods of factorization
QR factorization
Block QR factorization

The QR factorization

Given a matrix $A \in \mathbb{R}^{m \times n}, m \geq n$, its $Q R$ factorization is

$$
A=Q R=\left(\begin{array}{ll}
Q_{1} & Q_{2}
\end{array}\right)\binom{R_{1}}{0}=Q_{1} R_{1}
$$

where $Q \in \mathbb{R}^{m \times m}$ is orthogonal and $R \in \mathbb{R}^{m \times n}$ is upper triangular.
If A has full rank, the factorization $Q_{1} R_{1}$ is essentialy unique (modulo signs of diagonal elements of R).

- $A^{T} A=R_{1}^{T} R_{1}$ is a Cholesky factorization and $A=A R_{1}^{-1} R_{1}$ is a QR factorization.
- $A=Q_{1} D \cdot D R_{1}, D=\operatorname{diag}(\pm 1)$ is a $Q R$ factorization.

Householder transformation

The Householder matrix

$$
P=I-\frac{2}{v^{\top} v} v^{T}
$$

has the following properties:

- is symmetric and orthogonal, $P^{2}=I$,
- is independent of the scaling of v,
- it reflects x about the hyperplane $\operatorname{span}(v)^{\perp}$

$$
P x=x-\frac{2 v^{\top} x}{v^{\top} v} v=x-\alpha v
$$

Presentation of Householder transformations and stability analysis from [N.J.Higham, 2002].

Householder for the QR factorization

We look for a Householder matrix that allows to annihilate the elements of a vector x, except first one.

$$
P x=y, \quad\|x\|_{2}=\|y\|_{2}, \quad y=\sigma e_{1}, \quad \sigma= \pm\|x\|_{2}
$$

With the choice of sign made to avoid cancellation when computing $v_{1}=x_{1}-\sigma$, we have

$$
\begin{aligned}
v & =x-y=x-\sigma e_{1} \\
\sigma & =-\operatorname{sign}\left(x_{1}\right)\|x\|_{2}, v=x-\sigma e_{1} \\
P & =I-\beta v v^{T}, \beta=\frac{2}{v^{T} v}
\end{aligned}
$$

Householder based QR factorization

$$
A=\left(\begin{array}{lll}
x & x & x \\
x & x & x \\
x & x & x
\end{array}\right)=P_{1}\left(\begin{array}{lll}
x & x & x \\
0 & x & x \\
0 & x & x
\end{array}\right)=P_{1}\left(\begin{array}{ll}
1 & \\
& \tilde{P}_{2}
\end{array}\right)\left(\begin{array}{lll}
x & x & x \\
0 & x & x \\
0 & 0 & x
\end{array}\right)=R
$$

So we have

$$
\begin{aligned}
Q^{T} A & =P_{n} P_{n-1} \ldots P_{1} A=R, \\
Q & =\left(I-\beta_{1} v_{1} v_{1}^{T}\right) \ldots\left(I-\beta_{n-1} v_{n-1} v_{n-1}^{T}\right)\left(I-\beta_{n} v_{n} v_{n}^{T}\right)
\end{aligned}
$$

$\#$ flops $=2 n^{2}(m-n / 3)$

Error analysis of Householder transformations

Lemma (Lemma 19.1 in [N.J.Higham, 2002])

Consider the computation of $P=I-\beta v v^{\top}$, where $P x=\sigma e_{1}, v \in \mathbb{R}^{m}$, as
1: $v=x$
2: $s=\operatorname{sign}\left(x_{1}\right)\|x\|_{2}, \quad \% \sigma=-s$
3: $v_{1}=v_{1}+s$
4: $\beta=1 /\left(s v_{1}\right)$
Then we have

$$
\begin{aligned}
\hat{v}(2: n) & =v(2: n) \\
\hat{\beta} & =\beta\left(1+\tilde{\theta}_{m}\right), \quad \hat{v}_{1}=v_{1}\left(1+\tilde{\theta}_{m}\right), \text { where }\left|\tilde{\theta}_{m}\right| \leq \tilde{\gamma}_{m}
\end{aligned}
$$

Proof based on the fact that $f\left(x^{T} x\right)=\left(1+\theta_{m}\right) x^{T} x$. The result can be re-written as

$$
\hat{v}=v+\Delta v, \quad|\Delta v| \leq \tilde{\gamma}_{m}|v|
$$

In the following results, the Householder matrix is $I-v v^{\top}$, hence $v=\sqrt{\beta} v$, $\beta=1$, and so $\|v\|_{2}=\sqrt{2}$.

Error analysis of Householder transformations

Lemma (Lemma 19.2 in [N.J.Higham, 2002])
Consider the computation $y=\hat{P} b=\left(I-\hat{v} \hat{v}^{T}\right) b$, where $b, \hat{v} \in \mathbb{R}^{m}$. Then

$$
\begin{equation*}
\hat{y}=(P+\Delta P) b, \quad\|\Delta P\|_{F} \leq \tilde{\gamma}_{m} . \tag{1}
\end{equation*}
$$

Proof.

$$
\begin{aligned}
\hat{w} & =f\left(\hat{v}\left(\hat{v}^{\top} b\right)\right)=(\hat{v}+\Delta \hat{v})\left(\hat{v}^{T}(b+\Delta b)\right), \quad|\Delta \hat{v}| \leq u|\hat{v}| \text { and }|\Delta b| \leq \gamma_{m}|b| \\
& =(v+\Delta v+\Delta \hat{v})(v+\Delta v)^{T}(b+\Delta b)
\end{aligned}
$$

Hence

$$
\hat{w}=v\left(v^{\top} b\right)+\Delta w, \quad \text { where }|\Delta w| \leq \tilde{\gamma}_{m}|v|\left|v^{\top}\right||b|
$$

Error analysis of Householder transformations

Continued proof of the previos lemma. We obtain

$$
\hat{y}=f \prime(b-\hat{w})=b-v\left(v^{\top} b\right)-\Delta w+\Delta y_{1}, \quad\left|\Delta y_{1}\right| \leq u|b-\hat{w}|
$$

Since

$$
\left|-\Delta w+\Delta y_{1}\right| \leq u|b|+\tilde{\gamma}_{m}|v|\left|v^{\top}\right||b|
$$

we obtain

$$
\hat{y}=P b+\Delta y, \quad\|\Delta y\|_{2} \leq \tilde{\gamma}_{m}\|b\|_{2}
$$

Finally, with $\Delta P=\Delta y b^{T} / b^{T} b$, we have

$$
\hat{y}=(P+\Delta P) b, \quad\|\Delta P\|_{F}=\|\Delta y\|_{2} /\|b\|_{2} \leq \tilde{\gamma}_{m}
$$

Error analysis of a sequence of transformations

Lemma ([N.J.Higham, 2002])

Let $Q=P_{r} P_{r-1} \ldots P_{1}$ and let $A_{r+1}=Q^{T} A, A \in \mathbb{R}^{m \times n}$. We have

$$
\hat{A}_{r+1}=Q^{T}(A+\Delta A), \quad\left\|\Delta a_{j}\right\|_{2} \leq r \tilde{\gamma}_{m}\left\|a_{j}\right\|_{2}, \quad j=1: n
$$

Sketch of the proof: Let a_{j} be the j-th column of A.

$$
\hat{a}_{j}^{(r+1)}=\left(P_{r}+\Delta P_{r}\right) \ldots\left(P_{1}+\Delta P_{1}\right) a_{j}, \quad\left\|\Delta P_{k}\right\|_{F} \leq \tilde{\gamma}_{m}, k=1: r
$$

We obtain

$$
\begin{aligned}
\hat{a}_{j}^{(r+1)} & =Q^{T}\left(a_{j}+\Delta a_{j}\right), \\
\left\|\Delta a_{j}\right\|_{2} & \leq\left(\left(1+\tilde{\gamma}_{m}\right)^{r}-1\right)\left\|a_{j}\right\|_{2} \leq \frac{r \tilde{\gamma}_{m}}{1-r \tilde{\gamma}_{m}}\left\|a_{j}\right\|_{2}=r \tilde{\gamma}_{m}^{\prime}\left\|a_{j}\right\|_{2}
\end{aligned}
$$

Error analysis of the QR factorization

The following result follows
Theorem ([N.J.Higham, 2002])
Let $\hat{R} \in \mathbb{R}^{m \times n}$ be the computed factor of $A \in \mathbb{R}^{m \times n}$ obtained by using Householder transformations. Then there is an orthogonal $Q \in \mathbb{R}^{m \times m}$ such that

$$
A+\Delta A=Q \hat{R}, \text { where }\left\|\Delta a_{j}\right\|_{2} \leq \tilde{\gamma}_{m n}\left\|a_{j}\right\|_{2}, \quad j=1: n
$$

Householder-QR factorization

Require: $A \in \mathbb{R}^{m \times n}$
1: Let $R \in \mathbb{R}^{n \times n}$ be initialized with zero matrix
2: for $k=1$ to n do
3:
\triangleright Compute Householder matrix $P_{k}=I-\beta_{k} v_{k} v_{k}^{\top}$ s.t. $P_{k} A(k: m, k)= \pm\|A(k: m, k)\|_{2} e_{1}$. Store v_{k} in $Y()$ and β_{k} in $\mathcal{T}(k)$
4 :

$$
R(k, k)=-\operatorname{sgn}(A(k, k)) \cdot\|A(k: m, k)\|_{2}
$$

5: $\quad \mathcal{T}(k)=\frac{R(k, k)-A(k, k)}{R(k, k)}$
6: $\quad Y(k+1: m, k)=\frac{1}{R(k, k)-A(k, k)} \cdot A(k+1: m, k)$
\triangleright Update trailing matrix
8: $\quad A(k: m, k+1: n)=(I-Y(k+1: m, k) \mathcal{T}(k) Y(k+1:$

$$
\left.m, k)^{T}\right) \cdot A(k: m, k+1: n)
$$

9: $\quad R(k, k+1: n)=A(k, k+1: n)$

10: end for

Assert: $A=Q R$, where $Q=P_{1} \ldots P_{n}=\left(I-\beta_{1} v_{1} v_{1}^{\top}\right) \ldots\left(I-\beta_{n} v_{n} v_{n}^{T}\right)$, the Householder vectors v_{k} are stored in Y and \mathcal{T} is an array of size n.

Computational complexity

- Flops per iterations
\square Dot product $w=v_{k}^{T} A(k: m, k+1: n): 2(m-k)(n-k)$
\square Outer product $v_{k} w:(m-k)(n-k)$
\square Subtraction $A(k: m, k+1: n)-\ldots:(m-k)(n-k)$
- Flops of Householder-QR

$$
\begin{aligned}
& \sum_{k=1}^{n} 4(m-k)(n-k)=4 \sum_{k=1}^{n}\left(m n-k(m+n)+k^{2}\right) \\
& \approx 4 m n^{2}-4(m+n) n^{2} / 2+4 n^{3} / 3=2 m n^{2}-2 n^{3} / 3
\end{aligned}
$$

Algebra of block QR

Storage efficient representation for Q [Schreiber and Loan, 1989]

$$
Q=Q_{1} Q_{2} \ldots Q_{k}=\left(I-\beta_{1} v_{1} v_{1}^{T}\right) \ldots\left(I-\beta_{k} v_{k} v_{k}^{T}\right)=I-Y T Y^{T}
$$

Example for $k=2$

$$
Y=\left(v_{1} \mid v_{2}\right), \quad T=\left(\begin{array}{cc}
\beta_{1} & -\beta_{1} v_{1}^{T} v_{2} \beta_{2} \\
0 & \beta_{2}
\end{array}\right)
$$

Example for combining two compact representations

$$
\begin{aligned}
Q & =\left(I-Y_{1} T_{1} Y_{1}^{T}\right)\left(I-Y_{2} T_{2} Y_{2}^{T}\right) \\
T & =\left(\begin{array}{cc}
T_{1} & -T_{1} Y_{1}^{T} Y_{2} T_{2} \\
0 & T_{2}
\end{array}\right)
\end{aligned}
$$

Block algorithm for computing the QR factorization

Partitioning of matrix A of size $m \times n$

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]
$$

where A_{11} is of size $b \times b, A_{21}$ is of size $(m-b) \times b, A_{12}$ is of size $b \times(n-b)$ and A_{22} is of size $(m-b) \times(n-b)$.

Block QR algebra
The first step of the block QR factorization algorithm computes:

$$
Q_{1}^{T} A=\left(\begin{array}{cc}
R_{11} & R_{12} \\
& A^{1}
\end{array}\right)
$$

The algorithm continues recursively on the trailing matrix A^{1}.

Algebra of block QR factorization

$$
A=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)=Q_{1}\left(\begin{array}{cc}
R_{11} & R_{12} \\
& A^{1}
\end{array}\right)
$$

Block QR algebra

1. Compute the factorization

$$
\binom{A_{11}}{A_{12}}=Q_{1} R_{11}
$$

2. Compute the compact representation $Q_{1}=I-Y T Y^{T}$
3. Apply Q_{1}^{T} on the trailing matrix

$$
\left(I-Y T^{T} Y^{T}\right)\binom{A_{12}}{A_{22}}=\binom{A_{12}}{A_{22}}-Y\left(T^{T}\left(Y^{T}\binom{A_{12}}{A_{22}}\right)\right)
$$

4. The algorithm continues recursively on the trailing matrix A^{1}.

Parallel implementation of the QR factorization

QR factorization on a $P=P_{r} \times P_{c}$ grid of processors
For $\mathrm{ib}=1$ to $\mathrm{n}-1$ step b

1. Compute panel factorization on P_{r} processors

$$
\binom{A_{11}}{A_{12}}=Q_{1} R_{11}=\left(I-Y T Y^{T}\right) R_{11}
$$

2. The P_{r} processors broadcast along the rows their parts of Y and T
3. Apply Q_{1}^{T} on the trailing matrix:
\square All processors compute their local part of

$$
W_{l}=Y_{l}^{T}\left(A_{12 l} ; A_{22 l}\right)
$$

\square The processors owning block row ib compute the sum over W_{1}, that is

$$
W=Y^{T}\left(A_{12} ; A_{22}\right)
$$

and then compute $W^{\prime}=T^{T} W$
\square The processors owning block row ib broadcast along the columns their part of W^{\prime}
4. All processors compute

$$
\left(A_{12}^{1} ; A_{22}^{1}\right)=\left(A_{12} ; A_{22}\right)-\left(A_{12} ; A_{22}\right) * W^{\prime}
$$

Cost of parallel QR factorization

$$
\begin{aligned}
& \gamma \cdot\left(\frac{6 m n b-3 n^{2} b}{2 p_{r}}+\frac{n^{2} b}{2 p_{c}}+\frac{2 m n^{2}-2 n^{3} / 3}{p}\right) \\
+ & \beta \cdot\left(n b \log p_{r}+\frac{2 m n-n^{2}}{p_{r}}+\frac{n^{2}}{p_{c}}\right) \\
+ & \alpha \cdot\left(2 n \log p_{r}+\frac{2 n}{b} \log p_{c}\right) .
\end{aligned}
$$

Solving least squares problems

Given matrix $A \in \mathbb{R}^{m \times n}, \operatorname{rank}(A)=n$, vector $b \in \mathbb{R}^{m \times 1}$, the unique solution to $\min _{x}\|A x-b\|_{2}$ is

$$
x=A^{+} b, \quad A^{+}=\left(A^{T} A\right)^{-1} A^{T}
$$

Using the QR factorization of A

$$
A=Q R=\left(\begin{array}{ll}
Q_{1} & Q_{2} \tag{2}
\end{array}\right)\binom{R_{1}}{0}
$$

We obtain

$$
\begin{aligned}
\|r\|_{2}^{2} & =\|b-A x\|_{2}^{2}=\left\|b-\left(\begin{array}{ll}
Q_{1} & Q_{2}
\end{array}\right)\binom{R_{1}}{0} x\right\|_{2}^{2} \\
& =\left\|\binom{Q_{1}^{T}}{Q_{2}^{T}} b-\binom{R_{1}}{0} x\right\|_{2}^{2}=\left\|\binom{Q_{1}^{T} b-R_{1} x}{Q_{2}^{T} b}\right\|_{2}^{2} \\
& =\left\|Q_{1}^{T} b-R_{1} x\right\|_{2}^{2}+\left\|Q_{2}^{T} b\right\|_{2}^{2}
\end{aligned}
$$

Solve $R_{1} x=Q_{1}^{T} b$ to minimize $\|r\|_{2}$.

Acknowledgement

- Stability analysis results presented from [N.J.Higham, 2002]
- Some of the examples taken from [Golub and Van Loan, 1996]

References (1)

(1996).

Matrix Computations (3rd Ed.).
Johns Hopkins University Press, Baltimore, MD, USA.
國 N.J.Higham (2002).
Accuracy and Stability of Numerical Algorithms.
SIAM, second edition.
R Schreiber, R. and Loan, C. V. (1989).
A storage efficient $W Y$ representation for products of Householder transformations.
SIAM J. Sci. Stat. Comput., 10(1):53-57.

